Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation.

نویسندگان

  • Max C Waldhauer
  • Silvan N Schmitz
  • Constantin Ahlmann-Eltze
  • Jan G Gleixner
  • Carolin C Schmelas
  • Anna G Huhn
  • Charlotte Bunne
  • Magdalena Büscher
  • Max Horn
  • Nils Klughammer
  • Jakob Kreft
  • Elisabeth Schäfer
  • Philipp A Bayer
  • Stephen G Krämer
  • Julia Neugebauer
  • Pierre Wehler
  • Matthias P Mayer
  • Roland Eils
  • Barbara Di Ventura
چکیده

The activity of proteins is dictated by their three-dimensional structure, the native state, and is influenced by their ability to remain in or return to the folded native state under physiological conditions. Backbone circularization is thought to increase protein stability by decreasing the conformational entropy in the unfolded state. A positive effect of circularization on stability has been shown for several proteins. Here, we report the development of a cloning standard that facilitates implementing the SICLOPPS technology to circularize proteins of interest using split inteins. To exemplify the usage of the cloning standard we constructed two circularization vectors based on the Npu DnaE and gp41-1 split inteins, respectively. We use these vectors to overexpress in Escherichia coli circular forms of the Bacillus subtilis enzyme family 11 xylanase that differ in the identity and number of additional amino acids used for circularization (exteins). We found that the variant circularized with only one additional serine has increased thermostability of 7 °C compared to native xylanase. The variant circularized with six additional amino acids has only a mild increase in thermostability compared to the corresponding exteins-bearing linear xylanase, but is less stable than native xylanase. However, this circular xylanase retains more than 50% of its activity after heat shock at elevated temperatures, while native xylanase and the corresponding exteins-bearing linear xylanase are largely inactivated. We correlate this residual activity to the fewer protein aggregates found in the test tubes of circular xylanase after heat shock, suggesting that circularization protects the protein from aggregation under these conditions. Taken together, these data indicate that backbone circularization has a positive effect on xylanase and can lead to increased thermostability, provided the appropriate exteins are selected. We believe that our cloning standard and circularization vectors will facilitate testing the effects of circularization on other proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secretory Expression and Characterization of Two Hemicellulases, Xylanase, and β-Xylosidase, Isolated from Bacillus Subtilis M015

Microbial hydrolysis of lignocellulosic biomass is becoming increasingly important for the production of renewable biofuels to address global energy concerns. Hemicellulose is the second most abundant lignocellulosic biopolymer consisting of mostly xylan and other polysaccharides. A variety of enzymes is involved in complete hydrolysis of xylan into its constituent sugars for subsequent biofuel...

متن کامل

Crystallization and preliminary X-ray diffraction study of two complexes of a TAXI-type xylanase inhibitor with glycoside hydrolase family 11 xylanases from Aspergillus niger and Bacillus subtilis.

Endo-beta-1,4-xylanases hydrolyze arabinoxylan, a major constituent of cereal cell walls, and are nowadays widely used in biotechnological processes. Purified complexes of family 11 xylanases from Aspergillus niger and Bacillus subtilis with TAXI I, a TAXI-type xylanase inhibitor from Triticum aestivum L., were prepared. In both cases the complex was crystallized using the hanging-drop vapour-d...

متن کامل

استفاده از پسماندهای کشاورزی- صنعتی در تولید آنزیم زایلاناز سویه بومی Bacillus subtilis S7e

  Background and Aim: Xylanases are widely used in various food industries, including livestock and poultry feed industries, the pulp and paper industry, as well as the pharmaceutical industry. Several strains of microorganisms are capable of producing this enzyme by different mechanisms, Bacilliaceae being one of its important sources at the commercial scale. The culture medium for xylan is ex...

متن کامل

Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1).

The 1.7A resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved beta-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 2...

متن کامل

Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein.

High thermostability of an enzyme is critical for its industrial application. While many engineering approaches such as mutagenesis have enhanced enzyme thermostability, they often suffer from reduced enzymatic activity. A thermally stabilized enzyme with unchanged amino acids is preferable for subsequent functional evolution necessary to address other important industrial needs. In the researc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 11 12  شماره 

صفحات  -

تاریخ انتشار 2015